

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 2059-2062

www.elsevier.com/locate/jeurceramsoc

Microwave dielectric properties of $Ba_xLa_4Ti_{3+x}O_{12+3x}$ (x = 0.0–1.0) ceramics

H. Yamada^{a,*}, T. Okawa^a, Y. Tohdo^b, H. Ohsato^b

^a Daiken Chemical Co., 2-7-9 Hanaten-Nishi, Joto-ku, Osaka 536-0011, Japan

^b Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

Available online 21 November 2005

Abstract

In the BaO–La₂O₃–TiO₂ system, the Ba_nLa₄Ti_{3+n}O_{12+3n} homologous compounds exist on the tie line BaTiO₃–La₄Ti₃O₁₂ besides tungstenbronzetype like Ba_{6-3x}R_{8+2x}Ti₁₈O₅₄ (R=rare earth) solid solutions. There are four kinds of compounds in the homologous series: n = 0, La₄Ti₃O₁₂; n = 1, BaLa₄Ti₄O₁₅; n = 2, Ba₂La₄Ti₅O₁₈; n = 4, Ba₄La₄Ti₇O₂₄. These compounds have the layered hexagonal perovskite-like structure, which has a common sub-structure in the crystal structure. These compounds have been investigated in our previous studies. In this study, we have investigated the phase relation and the microwave dielectric properties of Ba_xLa₄Ti_{3+x}O_{12+3x} ceramics in the range of *x* between 0.2 and 1.0. With the increase in *x*, the dielectric constant ε_r locates around 45, the quality factor $Q \times f$ shows over 80,000 GHz at x = 0.2 and the minimum value of 30,000 GHz at x = 0.9, and the temperature coefficients of resonant frequency τ_f is improved from -17 to -12 ppm/°C. At x = 0.2, the ceramic composition obtained has dielectric constant $\varepsilon_r = 42$, the temperature coefficient of the resonant frequency $\tau_f = -17$ ppm/°C and a high $Q \times f$ of 86,000 GHz. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Dielectric properties; BaTi03 and titanates; Composites; X-ray methods

1. Introduction

Microwave dielectric ceramics are used in telecommunication mobile equipment as a resonance element, and they have contributed greatly to the downsizing.¹⁻⁴ The important properties required for a microwave dielectric ceramic are as follows: a high dielectric constant ε_r , a high quality factor $Q \times f$ and a low temperature coefficient of resonant frequency τ_f . Especially, the microwave dielectric ceramics used in the base stations of mobile phones are required to have a high $Q \times f$ value more than 30,000 GHz to withstand high electric loads. But for the new digital systems, still higher $Q \times f$ value materials are required. Generally, the $Ba(Mg_{1/3}Ta_{2/3})O_3$ systems have a very high $Q \times f$ value of over 100,000 GHz, while the cost is very high because of the content of Ta element. Generally, in microwave materials, the $Q \times f$ value lowers as much as in the case of materials whose dielectric constant is high. Therefore, conventional microwave dielectric ceramics for base stations have relatively low dielectric constants.

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.060

In the BaO-La₂O₃-TiO₂ system as shown in Fig. 1, the $Ba_nLa_4Ti_{3+n}O_{12+3n}$ homologous compounds exist on the tie line BaTiO₃-La₄Ti₃O₁₂ beside tungstenbronze-type like $Ba_{6-3x}R_{8+2x}Ti_{18}O_{54}$ (R = rare earth) solid solutions. $Ba_{6-3x}R$ $_{8+2x}$ Ti₁₈O₅₄ solid solutions^{5,6} exist on the tie line connecting the BaTiO₃ and R₂Ti₃O₉ compositions in the TiO₂-rich region of the BaO-R₂O₃-TiO₂ ternary system. Many extensive studies^{7–14} of this compound have been carried out. There are four compounds on the tie line connecting the BaTiO₃ and $La_4Ti_3O_{12}$ compositions: n = 0, $La_4Ti_3O_{12}$; n = 1, $BaLa_4Ti_4O_{15}$; n = 2, Ba₂La₄Ti₅O₁₈; n = 4, Ba₄La₄Ti₇O₂₄ and are indicated in Fig. 1. These compounds have the layered hexagonal perovskitelike structure, which has a common sub-structure in the crystal structure.^{15,16} And these compounds have been investigated in our previous studies except n = 0 compounds.¹⁷ This La₄Ti₃O₁₂ (n=0) compound decomposes to La₂TiO₅ and La₂Ti₂O₇ at 1450 °C, as shown in Fig. 2.¹⁹ We have already found good properties in n = 1 compounds that is BaLa₄Ti₄O₁₅ as a candidate for a material for the base station.¹⁸

In this study, we have investigated the phase relation and the microwave dielectric properties between n=0 and n=1 Ba_nLa₄Ti_{3+n}O_{12+3n} homologous compounds, that is Ba_xLa₄Ti_{3+x}O_{12+3x} in the range of x=0.0-1.0 as shown in Fig. 1.

^{*} Corresponding author.

2. Experimental

High-purity (99.9%) BaCO₃, La₂O₃ and TiO₂ powders were used as starting materials to prepare Ba_xLa₄Ti_{3+x}O_{12+3x} with x varying from 0.0 to 1.0. The powder mixtures were ball-milled in a polyethylene jar with zirconia balls and distilled water for 12 h, then dried and calcined at 1200 °C for 4 h in air. The calcined powders were ball-milled, dried and mixed with PVA as a binder. The powders were sieved and pressed into discs with a thickness of 6 mm and a diameter of 12 mm at 100 MPa. The discs were sintered at temperatures from 1500 to 1600 °C for 4 h in air. The crystalline phases of the sintered specimens were

Fig. 3. X-ray powder diffraction patterns of $Ba_xLa_4Ti_{3+x}O_{12+3x}$.

identified by X-ray powder diffraction (XRPD). The polished surface was observed by scanning ion microscopy (SIM). The dielectric constant ε_r , unloaded *Q*-values and temperature coefficients of the resonant frequency τ_f between 20 and 80 °C were measured using a pair of parallel conducting Ag plates on the TE₀₁₁ mode using Hakki and Coleman's method.^{20,21}

3. Results and discussion

In the composition range between x=0 and x=1 in Ba_xLa₄Ti_{3+x}O_{12+3x}, the La₄Ti₃O₁₂ (x=0.0) compound was excluded in this study because of its difficult sintering. Though the densities of the samples with x=0.2-1.0 were almost constant at 6.1 g/cm³, the sample with x=0.0 was at a lower density of 4.6 g/cm³ as shown in Fig. 4. As it was not able to obtain

Fig. 4. Microwave dielectric properties of $Ba_xLa_4Ti_{3+x}O_{12+3x}$ as a function of *x*.

Fig. 5. Images of SIM (Scanning Ion Microscopy) with (a) x = 0.7 and (b) x = 0.4 composition.

high-density ceramics, we could not measure the dielectric properties. The difficulty in sintering comes from its decomposition into two phases at temperatures above $1450 \,^{\circ}$ C from the La₂O₃-TiO₂ binary phase diagram as shown in Fig. 2.¹⁹

In the composition range x = 1.0-0.0 of Ba_xLa₄Ti_{3+x}O_{12+3x}, the precipitated phases were homologous Ba_nLa₄Ti_{3+n}O_{12+3n} compounds with n = 1 and n = 0 identified based on XRPD patterns as shown in Fig. 3. Diffraction peaks of the homologous compound with n = 1 and n = 0 are shown by diamond and reversed solid triangle, respectively. The diffraction peaks denoted by solid circles are from similar *d*-spacing in both homologous compounds. In the composition range of x = 1.0-0.7 and x = 0.3-0.2, the homologous compounds with n = 1 and n = 0 are observed, respectively. And in the intermediate composition range x = 0.5-0.4, two phases with n = 1 and n = 0 are co-observed.

Fig. 4 shows the microwave dielectric properties as a function of composition x. The dielectric constants ε_r in the whole composition range showed excellent values of 42–45. The ε_r is usually desired more than 40 for the miniaturization of base station. Moreover, the quality factor $Q \times f$ of 86,000 GHz for x = 0.2 was the highest value reported among the dielectrics with high ε_r more than 40 in our knowledge in the world. The ε_r is a little lower of 42 due to lower density because of its difficult sintering described above, and τ_f is near -17 within -20to +20 ppm/°C of suitable values for applications. In the range of x = 0.3-0.2, the $Q \times f$ increases from 60,000 to 85,000 GHz. So, the $Q \times f$ value could be extrapolated to x = 0, that is, n = 0homologous La₄Ti₃O₁₂ phase to be 125,000 GHz. If ceramics with x = 0.0 composition has been synthesized, it is expected that the microwave materials which has high $Q \times f$ product more than 100,000 GHz without expensive Ta element will be put to practical use.

In another region of x = 0.7-1.0, they are composed with n = 1 homologous compound as shown in XRPD of Fig. 3 and in the SIM image of Fig. 5a without secondary phases. These results reveal formation of solid solutions with n = 1. The microwave dielectric properties are stable for ε_r values to be in the vicinity of 45, for $Q \times f$ values to be varied between 30,000 and 60,000GHz and for τ_f values to be in the range of -14 to $-12 \text{ ppm/}^\circ\text{C}$.

The compounds with x = 0.5-0.7 also have excellent microwave dielectric properties of $\varepsilon_r = 45$ and $Q \times f$ product larger than 40,000 GHz for base station dielectrics like the n = 1 homologous compound with 46,000 GHz in a previous paper.¹⁷ The $Q \times f$ curve has the minimum value of 30,000 GHz at x = 0.9. The reason might be stacking fault of (Ba,La)O₃ packing layer due to formation of solid solutions. At just x = 1.0, it is considered that $Q \times f$ becomes a great value of 46,000 GHz due to dissolution of stacking fault.

In the range of x=0.3-0.5, two phases with n=0 and n=1 coexist in XRPD patterns as shown in Fig. 3, and also in the image of SIM with x=0.4 as shown in Fig. 5b. The SIM image is composed by two phases with different contrast. The dark phase is confirmed to be La₄Ti ₃O₁₂ from the result of the XRPD. The $Q \times f$ product of 58,000 GHz and ε_r of 45 are almost constant, because the $Q \times f$ and ε_r values of the end members of n=0 and n=1 solid solutions may be same.

4. Conclusions

We have clarified following knowledge for microwave dielectrics properties of $Ba_xLa_4Ti_{3+x}O_{12+3x}$ (x=0.0–1.0) ceramics.

There are two single-phase regions in the ceramics: (a) n=0 homologous Ba_nLa₄Ti_{3+n}O_{12+3n} compound in the range of x=0.0-0.3, and (b) n=1 in the range of x=0.5-1.0. In the intermediate composition range x=0.5-0.3, the two phases are coexisting.

The ceramics have high dielectric constants ε_r in the whole composition range with values 42–45 and are useful for miniaturization of base stations.

There are three excellent candidates for base station dielectrics applications: (1) for x = 0.2 having highest $Q \times f$ product of 86,000 GHz with high ε_r of 42 and τ_f of -17 ppm/°C; (2) for x = 0.35-0.5 showing good compositional stability with $Q \times f$ product of 60,000 GHz with high ε_r of 45 and τ_f of -15 to -16 ppm/°C. (3) The third candidates in the range of x = 0.5-0.7 also show good dielectric properties with $Q \times f = 60,000-40,000$ GHz, $\varepsilon_r = 45$ and $\tau_f \sim -14$ to -12.5 ppm/°C.

If a ceramics with n = 0 composition can be synthesized overcoming the difficulty of sintering, then it may be possible to realize a super microwave dielectrics with high $Q \times f$ product more than 100,000 GHz.

References

- O'Bryan Jr., H. M., Thomson, H. and Plourde, J. K., A new BaO–TiO₂ compound with temperature-stable high permittivity and low microwave loss. *J. Am. Ceram. Soc.*, 1974, **57**, 450–453.
- Wakino, K., Minami, K. and Tamura, H., Microwave characteristics of (Zn,Sn)TiO₄ and BaO–PbO–Nd₂O₃–TiO₂ dielectric resonators. *J. Am. Ceram. Soc*, 1984, 67, 278–281.
- Nishigaki, S., Microwave dielectric. FC Rep., 1987, 5, 413–422, Translation, FC Annual Report for Overseas Readers, 1988, pp. 32–41.
- Nishigaki, S., My research and development in microwave dielectric. *New Ceram.*, 1996, 9, 25–36.
- Varfolomeev, M. B., Mironov, A. S., Kostomarov, V. S., Golubtsova, L. A. and Zolotova, T. A., The synthesis and homogeneity ranges of the phases Ba_{6-x}R_{8+2x/3}Til₈O₅₄. *Russ. J. Inorg. Chem.*, 1988, **33**, 607–608.
- Ohsato, H., Ohhashi, T., Nishigaki, S., Okuda, T., Sumiya, K. and Suzuki, S., Formation of solid solutions of new tungsten bronze-type microwave dielectric compounds Ba_{6-3x}R_{8+2x}Ti1₈O₅₄ (*R*=Nd and Sm, 0 ≤ x ≤ 1). *Jpn. J. Appl. Phys*, 1993, **32**, 4323–4326.
- Bolton, R. L., *Temperature compensating ceramic capacitors in the system baria-rare-earth-oxide titania*, Ph.D. Thesis, Ceramic Engineering, University of Illinois, Urbana, Illinois (University Microfilms International, A Bell & Howell Information Company), 1968.
- Kolar, D., Stadlar, Z., Gaberscek, S. and Suvorov, D., Ceramic and dielectric properties of selected compositions in the BaO–TiO₂–Nd₂O₃ system. *Ber. Dtsh. Keram. Ges.*, 1978, **55**, 346–347.
- Kolar, D., Gaberscek, S. and Volavsek, B., Synthesis and crystal chemistry of BaNdTi₃O₁₀, BaNd₂Ti₅O₁₄, and Nd₄Ti₅O₂₄. J. Solid State Chem., 1981, 38, 158–164.
- Wakino, K., Minai, K. and Tamura, H., Microwave characteristics of (Zn, Sn)TiO₄ and BaO–PbO–Nd2O3–TiO2 dielectric resonators. *J. Am. Ceram. Soc*, 1984, 67, 278–281.

- Kawashima, S., Nishida, M., Ueda, I. and Ouchi, H., Dielectric properties at microwave frequencies of the ceramics in BaO-Sm2O3-TiO2 system, *Presented at the 87th Annual Meeting, Am. Ceram. Soc.*, Cincinnati, OH, May 6, 1985 (Electronics Division Paper No. 15-E-85).
- Nishigaki, S., Kato, H., Yano, S. and Kamimura, R., Microwave dielectric properties of (Ba,Sr)O–Sm₂O₃–TiO₂ ceramics. *Am. Ceram. Bull.*, 1987, 66, 1405–1410.
- Razgon, E. S., Gens, A. M., Varfolomeev, M. B., Korovin, S. S. and Kostomarov, V. S., The complex barium and lanthanum titanates. *Zh. Neorg. Khim.*, 1980, 25, 1701–1703, Translation. *Russ. J. Inorg. Chem.* 1988, 25, 945–947.
- Razgon, E. S., Gens, A. M., Varfolomeev, M. B., Korovin, S. S. and Kostomarov, V. S., Some barium lanthanide. *Zh. Neorg. Khim.*, 1980, 25, 2298–2300, Translation. *Russ. J. Inorg. Chem.* 1980, 25, 1274– 1275.
- Saltykova, V. A., Mel'nikoa, O. V., Leonova, N. V. and Fedorov, N. F., The La₄Ti₃O₁₂–BaTiO₃ system. *Zh. Neorg. Khim.*, 1985, **30**, 190– 193.
- 16. Tohdo, Y., Okawa, T., Okabe, H., Kakimoto, K. and Ohsato, H., Microwave dielectric homologous materials *ALa*₄Ti₄O₁₅ (*A*=Ba, Ca, Sr) with High *Q* · high dielectric constant for base station. *Key Eng. Mater.*, 2004, **269**, 203–206.
- Okawa, T., Kiuchi, T., Okabe, H. and Ohsato, H., Microwave dielectric properties of Ba_nLa4Ti_{3+n}O_{12+3n} homologous series. *Jpn. J. Appl. Phys.*, 2001, **40**, 5779–5782.
- Okawa, T., Kiuchi, T., Okabe, H. and Ohsato, H., Microwave dielectric properties of Ba_nLa4Ti_{3+n}O_{12+3n} homologous compounds and substitution of trivalent cations for La. *Ferroelectric*, 2002, 272, 345–350.
- Fedorov, N. F., Mel'nikova, O. V., Saltykova, V. A. and Chistyakova, M. V., System La₂O₃-TiO₂, patial. *Zh. Neorg. Khim.*, 1979, 24, 1166–1170, *Russ. J. Inorg. Chem.* 1979, 24, 649–651.
- Hakki, B. W. and Coleman, P. D., A dielectric resonator method of measuring inductive in the millimeter range. *IRE Trans. Microwave Theory Tech.*, 1960, MTT-8, 402–410.
- Kobayashi, Y. and Katoh, M., Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. *IEE Trans. Microwave Theory Tech.*, 1985, MTT-33, 586–592.